(#11-2 #11-1)

Modeling and determining equilibrium of solubility A salt KOH is dissolved by the following reaction. Write out the equilibrium expression b. What happens to the value of K if this substance is really soluble? Kis small A salt KOH is dissolved by the following reaction. a. Write out the equilibrium expression. b. What happens to the value of K if the substance is really is large if really soluble soluble.

To allow K to correspond with solubility, industrial scientist who created this method chose to always write the dissolving reaction with the solid on the left as see below.

 $KOH(s) \Leftrightarrow K^{+}(aq) + OH^{-1}$ To distinguish this method they gave it a special name "solubility product"

 $Ksp = [K^+][OH^{-1}]$

You take a sample of salt (table) and you start to dissolve it in water. You continue to add and stir the solution. After a period of time it appears solid is forming on the bottom.

Write the (Ksp) solubility equation,

- This chemical reaction goes to (completion/equilibrium)
- To the right draw a picture of table salt dissolving. The reaction gets saturated at time X.
- A student hypothesizes that stirring increases solubility. Confirm or counterthis statement. Stirring will increase the rate of dissolving, but will not effect
- How might you increase the solubility of table salt in water.

Increase Hemperature
Draw the picture of table salt in the beaker to the right at time X.

59 1 mol = 0.016 mol

A student dissolved Ag₂SO₄ in 100mL of water. The student added 5g of silver sulfate to the solution and measured the concentration of SO₄-2 to be 0.0135M and solid is on the bottom. Answer the following 0.0135M= X questions.

- Draw the beaker. A 92SO4 = 2Agt + 50
- Based on your picture, if the $SO4^{-2} = 0.0135$, what is the [Ag⁺] ? **Z** × 0.0135 [Agri] will be 2x's the concentration of 50,2 [0.027M]
- c. How might these concentrations change if 5 more grams of solid is No Change. The solution is already saturated (soled on bottom)

Create an ISE reaction table, Fill it out and determine the K value.

A92504=>2Ag+ +50g2

K=[4; 1]2[50; 2]

K= 6.027 6.0139= 9.8E-6

100 m

Two salts are dissolving, AgBr (Ksp = 5E-13) and AgCl (Ksp = 1.6E-10), Answer the following questions.

a. Write out the dissolving equation for each.

AgBr = Ag+1 + Br

AgCI = AgH + Cl-1

b. Write out the solubility expression.

Ksp=[A=][B=]

Ksp=[Ast][C1-7]

c. A large K value means what relative to solubility? A large K means lots of ions (as product) + is very soluble

d. Which of the two salts is more soluble?

Ksp=16E-10 is larger than Ksp=5E-13 Draw a saturated solution of the more soluble salt.

A student comes across a solution that is saturated solution of lead(II) chloride. The lead ion has a concentration of 1.5E-5M. Answer the following questions.

a. Write out the solubility reaction

PbC1200= Pb+2 +2C1-1

b. Write out the solubility equilibrium expression.

Ks0 = [P6+2][C1-]2

d. What is the concentration of the Chloride ion?

[Pb=]= 15 E-5M e. What is the equilibrium constant for this reaction?

Ksp=[Pb+2][Cl-]]2=[1.5E-5][3.0E-5M]2=1.35E-14

